
How we teach
computing
12 pedagogy principles

Lead with concepts
 Support pupils in the acquisition of knowledge,
through the use of key concepts, terms, and
vocabulary, providing opportunities to build a
shared and consistent understanding. Glossaries,
concept maps , and displays, along with regular
recall and revision, can support this approach.

Work together
Encourage collaboration, specifically using
pair programming and peer instruction,
and also structured group tasks. Working
together stimulates classroom dialogue,
articulation of concepts, and development
of shared understanding.

Get hands-on
Use physical computing and making activities
that offer tactile and sensory experiences to
enhance learning. Combining electronics and
programming with arts and crafts (especially
through exploratory projects) provides pupils
with a creative, engaging context to explore
and apply computing concepts.

Make concrete
Bring abstract concepts to life with real-
world, contextual examples and a focus on
interdependencies with other curriculum
subjects. This can be achieved through the use
of unplugged activities, proposing analogies,
storytelling around concepts, and finding
examples of the concepts in pupils’ lives.

Create projects
Use project-based learning activities to provide
pupils with the opportunity to apply and
consolidate their knowledge and understanding.
Design is an important, often overlooked
aspect of computing. Pupils can consider how
to develop an artefact for a particular user or
function, and evaluate it against a set of criteria.

Add variety
Provide activities with different levels of direction,
scaffolding, and support that promote active
learning, ranging from highly structured to more
exploratory tasks. Adapting your instruction to
suit different objectives will help keep all pupils
engaged and encourage greater independence.

Structure lessons
Use supportive frameworks when planning
lessons, such as PRIMM (Predict, Run, Investigate,
Modify, Make) and Use-Modify-Create. These
frameworks are based on research and ensure
that differentiation can be built in at various
stages of the lesson.

Read and explore code first
When teaching programming, focus first
on code ‘reading’ activities, before code
writing. With both block-based and text-based
programming, encourage pupils to review and
interpret blocks of code. Research has shown
that being able to read, trace, and explain code
augments pupils’ ability to write code.

Challenge misconceptions
Use formative questioning to uncover
misconceptions and adapt teaching to address
them as they occur. Awareness of common
misconceptions alongside discussion, concept
mapping, peer instruction, or simple quizzes can
help identify areas of confusion.

Unplug, unpack, repack
Teach new concepts by first unpacking complex
terms and ideas, exploring these ideas in
unplugged and familiar contexts, then repacking
this new understanding into the original
concept. This approach (semantic waves) can
help pupils develop a secure understanding of
complex concepts.

Model everything
Model processes or practices — everything
from debugging code to binary number
conversions — using techniques such as
worked example s and live codin g. Modelling
is particularly beneficial to novices, providing
scaffolding that can be gradually taken away.

Foster program
comprehension
Use a variety of activities to consolidate
knowledge and understanding of the
function and structure of program s, including
debugging, tracing, and Parson ’s Problems.
Regular comprehension activities will help
secure understanding and build connections
with new knowledge.

ncce.io/pedagogy

Find out more about
our principles and

add some or all
to your personal

pedagogy toolkit.

